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Abstract

Model-fitting, the problem of finding parameter settings that cause a model to fit

given data as closely as possible, is a hard but important problem in cognitive

science in general, and in cognitive diagnosis in particular. Efficient solutions

have been found for certain types of model-fitting problems (e.g., linear & integer

programming) that involve specific types of parameters (usually continuous) and

models (usually linear). But these techniques usually do not apply to

computational cognitive models whose parameters are often discrete and

symbolic and whose internal workings must be treated as a black box for the

purposes of fitting. We present ASPM (Analysis of Symbolic Parameter Models),

a suite of computational tools for fitting and analyzing such symbolic parameter

models, show how it can be used to fit and analyze computational models with

well over 10 billion parameter settings, and describe a few changes in the initial

design that will make it even more powerful as well as easier to use.
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ASPM2: Progress Toward the Analysis of Symbolic Parameter Models

Suppose you wanted to improve how subtraction is taught. Clearly, in

designing an appropriate curriculum, you may want to understand how children

go about solving the task and why they make the mistakes they do. One approach

to developing such an understanding would be to build, test, and refine

computational models of subtraction behavior. Of course, different children

approach subtraction in different ways, so your model would need to include

parameters that allow its behavior to be tailored to that of individual students. For

example, some students fail to borrow and always subtract the smaller digit in a

column from the larger even when the smaller digit appears in the upper number:

42

- 1.8

36

Thus, you would probably want to include a parameter that controls whether your

model makes this error:

Parameter: Smaller-from-larger

Values: (a) makes this error

(b) does not make this error

Similarly, many children treat blanks as if they were I's and make errors like the

following:

35

- 2

23

So you might include another parameter, Sub-one-over-blank, that controls
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whether or not yu; model behaves this way. Some mistakes may be due to more

than one error. For example, the following behavior could be explained by

assuming that the student made both errors described above:

671

- 28

557

In addition to these two, Brown & Burton (1978) identified a large number of

other common subtraction errors, which they called "bugs" (also see Burton,

1982; VanLehn, 1990). For a subtraction model to predict the behavior of

different students with any accuracy, it would seem to require a fairly large

number of parameters.

But this raises an entirely new set of issues. Which parameters are important

in predicting behavior and which are not? How much would it affect the model's

fit if a parameter were removed or if a value was changed? How "good" is the

model's fit? How does one avoid overfitting the data? And perhaps most

importantly, which parameter settings best fit a given student's behavior and how

can you figure this out without exhaustively trying the thousands, millions, or

even billions of possible combinations of parameter values?

The same issues must be faced by computational models in a wide variety of

domains: subtraction, physics, medical diagnosis, deductive reasoning, design,

etc. Indeed, analyzing any model of behavior in which there are a large number

of variables that affect performance will require addressing these problems.

Powerful techniques have already been developed for fitting and analyzing

certain types of parameterized models (e.g., linear and integer programming).

These techniques impose certain constraints on the model being analyzed (e.g.,
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that it is linear) and on its parameters (e.g., that they are continuous or at least

ordered) so that efficient algorithms can apply. Unfortunately, the types of

computational models mentioned above do not usually satisfy these constraints.

Parameter values are usually symbolic and unordered and the behavior of the

model is not simply a linear combination of parameter values, but is controlled by

a complicated computer program. No efficient techniques currently exist for

fitting and analyzing such models. ASPM1 and its successor ASPM2 (Analysis

of Symbolic Parameter Models) are sets of computational tools that provide such

a capability for certain common types of symbolic parameter models.

Fitting and Analyzing Symbolic Parameter Models

It is possible to characterize parameterized models in fairly abstract terms.

For a given task, the model maps each parameter setting (a point in parameter

space) onto a predicted response. For example, if the task were a specific

subtraction problem, then a parameter setting might correspond to a set of

subtraction bugs from which the computational model predicts a specific response

to the task. Different parameter settings that predict the same response for the

task can be grouped together to form response regions within parameter space

(e.g., the same response to a subtraction problem could arise from a variety of

different bugs). The set of all such response regions forms a response partition of

parameter spaceI. Figure 1 shows the situation when the parameter space is 2-

dimensional (i.e., when it contains only two parameters). The parameter space

(the square on the right) is divided into disjoint response regions thus forming a

response partition. The model maps all parameter settings within a given

response region onto the same predicted response. For example, all settings in

region RR1 map onto response rl in the figure. A given response may have an

empty response region (e.g., r4 and r5) in which case the model is unable to

produce that response on that task - the response is outside the model.

In general, one wants to analyze behavior on a set of tasks, rather than on a
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Insert Figure 1 about here

single, isolated task. If a student correctly solves a single subtraction problem, for

example, that does not imply that the student has mastered subtraction. The

student could have bugs (e.g., in borrowing) that fail to show up on a given

problem (e.g., that does not require borrowing). And given the wide variety of

common subtraction bugs, it is impossible for behavior on any single task to

diagnose the presence or absence of each of them. More generally, the responses

of a subject to a wide range of tasks are much more diagnostic about what

underlies that subject's behavior than is the response to a single task. Thus, the

above analysis needs to be generalized to deal with multiple tasks.

One way to achieve this goal is by treating multiple tasks as single

compound tasks which are made up of a sequence of primitive tasks (Figure 2).

Parameter space is once again partitioned into response regions. But instead of

mapping onto the same primitive response, each response region now maps onto

the same compound response, that is, a specific sequence of primitive responses

for each of the primitive tasks that together comprise the compound task.

Similarly, the response regions and response partition could be called the

compound response regions and compound response partition respectively. In

general, we will simply use the terms task, response, response region, and

response partition except when we want to draw attention to the

primitive/compound distinction.

Insert Figure 2 about here

Given a response partition for a task (either primitive or compound), the
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analysis of a model's fit to a subject's behavior becomes straightforward. If one

of the model's predicted responses matches the subject's response exactly, then

the associated response region contains all the best-fit parameter settings for that

subject on that task (and only those settings). In fact, they are exact-fit settings.

More generally, one can allow for inexact matches by defining a fit measure

between subject responses and model predictions. Perhaps the simplest such

measure is the Hamming distance - the number of tasks on which the model

incorrectly predicts the subject's response. But in many situations more

sophisticated fit measures would be desirable. For instance, if certain tasks

provide more reliable information for diagnosis than others, then it would be

appropriate for the fit measure to weight the model's success on those tasks more

heavily. In other cases, one might want the fit measure to correspond to a

probability (e.g., how likely is the subject's observed response based on the

model's predicted response and some error model).

Using such a fit measure to compare the subject's response with each

possible model prediction, one can find the response region (or regions) whose

associated prediction most closely resembles the subject's behavior (according to

that measure). The response regions can even be sorted based on the fit measure.

Response regions whose associated predictions fit the subject's behavior equally

well are merged to form fit regions and together these fit regions form a fit

partition of parameter space (Figure 3). The best-fit settings will all be at one end

of this partition while the worst-fit settings will be at the other. Such a fit

partition provides the basis for answering a variety of questions about the model

and subject: the quality of the model's fit, the stability of that fit with specific

parameter changes, the scope of the model's predictions (e.g., whether it can

exactly match a given behavior), and so on. Indeed, if one could compute a fit

partition for the compound task consisting of all primitive tasks in a domain, one

would have virtually all relevant information for analyzing the relationship
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between a subject's behavior and a model's predictions (at least with respect to

the fit measure that was used).

Insert Figure 3 about here

For example, such fit partitions provide a means for comparing different

models and determining just how good a model really is. Before such an analysis

is possible, however, it is necessary to control for the number of available degrees

of freedom. If a model has too many degrees of freedom then it may be able to fit

any data (including random noise) and it may overfit real data. One way of

dealing with this problem is to assess the model's fit to data that is separate from

the data used to set the parameters. For example, if one could compute a model's

fit partition with respect to a subject's behavior on half the tasks, then the

resulting best-fit parameter settings could be assessed against the subject's

behavior over the remaining tasks. Such 0-parameter fits can be used to compare

different models with varying degrees of freedom in order to determine which

model has more predictive value. Similarly, 0-parameter fits can be used to

compare a model with various reference theories including a random model (to

ensure that the model does better than chance), a model corresponding to the

modal responses of subjects (to determine whether the model is capturing

individual differences over and above the common responses), and a test-retest

model in which each subject's behavior at a different time serves as the model (to

estimate how close the model is to optimality). See Polk (1992) and Polk &

Newell (submitted) for examples of these types of analysis.

ASPM1

ASPM (Analysis of Symbolic Parameter Models) is a set of computational

tools for computing response partitions and fit partitions. The original version
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(ASPMO) was built in Lisp and was strongly tied to a specific model (of

syllogistic reasoning, Polk, 1992; Polk & Newell, submitted). It was only after

building ASPMO that we realized the general utility of the ideas. ASPM1 was our

first attempt to construct a general-purpose version of the tools.

ASPM1 was built in C. It had three major operations which correspond

closely to the analysis presented above:

1. Compose took response partitions for a sequence of primitive tasks

as input and produced as output the response partition for the

compound task corresponding to that sequence of primitive tasks.

2. Sort took as input a compound response partition and a subject's

behavior on that compound task and produced as output a fit

partition. It used a specific, built-in fit measure (Hamming

distance) to compare subject responses with model predictions.

3. Search took fit partitions from different compound tasks as input

and produced as output all parameter settings that best-fit the

subject on the compound task corresponding to the sequence of

input compound tasks (i.e., the best-fit region). This operation was

used to find best-fit settings for compound tasks that were too large

for a complete fit partition to be computed in a reasonable amount

of time.

In order to make use of ASPM1, we first had to compute primitive response

partitions which could serve as inputs (they could then be composed together,

sorted, and searched). ASPM cannot compute thcse on its own, since they store

information that is specific t-, the model being analyzed (its predictions for each
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task given any parameter setting), so it is up to the user to provide them. In the

worst case, computing the response partition for a primitive task could involve

running the model using every possible parameter setting and storing the results.

Such an approach is computationally infeasible for models with a large number of

parameter settings. Fortunately, for many mode!k such an exhaustive approach is

unnecessary. hi many cases, only a subset of parameters is relevant to an

individual task, a characteristic we refer to as loosely-coupled tasks. In

subtraction, for example, parameters that control borrowing behavior are

irrelevant to subtraction problems that do not involve borrowing. In domains with

loosely-coupled tasks, it becomes feasible to compute the primitive response

partitions since irrelevant parameters can be ignored. One need only run the

model using all the possible parameter settings involving the relevant parameters

-the values of the other parameters are irrelevant and need not be varied.

Using ASPM1 we were able to compute best-fit settings from parameter

spaces of over ten billion total settings and to perform numerous other at ilyses of

interest. For example, m the domain of syllogistic reasoning, we were able to (1)

compute a model's complete set of best-fitting parameter settings for 103

subjects, (2) compute 0-parameter fits for all these subjects by using a subset of

tasks to set the parameters and the remaining tasks to assess the quality of the fit,

(3) identify a few parameters that were most important in achieving a high degree

of fit and use these to produce a simpler, but still accurate, model, (4) analyze the

range of the model by fitting it to artificial data (e.g., random data to ensure that

the model could not fit everything, perfect performance to determine if the model

allowed for rationality, and (5) determine the predictive value of specific

theoretical assumptions by comparing fits from parameter settings that either did

or did not incorporate those assumptions (see Polk, 1992; Polk & Newell,

submitted).

Despite its power, in using ASPMI we came up with a number of ideas for
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its improvement:

1. The distinction between primitive and compound response partitions

should be transparent to the use-. ASPM1 represented and

processed primitive and compound response partitions differently.

As a result, operations that processed one type of response partition

were unable to process the other. For example, compose only

worked on primitive tasks, not compound tasks. Consequently, the

user was unable to use the output of one compose operation as the

input to another. As discussed above, there is no reason why

primitive and compound response partitions cannot be treated

identically and this was an unnecessary limitation.

2. The system should be able to process arbitrary subsets of parameter

space in a straightforward manner. ASPM1 dealt primarily with the

entire parameter space - both response and fit partitions divided all

of parameter space into individual regions. But there are a number

of questions that are best answered by restricting attention to a

subset of parameter space. For example, how would removing a

few parameters or parameter values affect the fit (requires

restricting parameter space by excluding those values)? What is the

range of predictions produced by the best-fit settings (i.e., what does

the response partition look like when restricted to include only best-

fit settings)? What predictions does a particular setting produce for

a specific primitive task or for a set of tasks (requires restricting a

primitive or compound response partition to include only that
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setting)? ASPMI was eventually augmented with the ability to

restrict primitive response partitions based on a subset of parameter

space, but a more general facility should really be provided.

3. Best-fit regions should be treated as fit partitions. The final result of

many analyses in ASPMI was a best-fit region - a distinct data

structure representing all the best-fitting parameter settings. But

best-fit regions are just a special case of fit partitions; they are fit

partitions that are restricted to best-fit settings and that consequently

have only a single fit region. ASPM should treat them as such since

that will allow any operations that process fit partitions to process

best-fit regions as well (e.g., the search operation and functions that

manipulate subsets of parameter space).

ASPM2

Based on these ideas, we have designed and are now implementing ASPM2

-a new version of the system. In place of ASPM1's four central data structures

(primitive response partitions, compound response partitions, fit partitions, and

best-fit regions), ASPM2 will have only two: response partitions (for both

primitive and compound tasks) and fit partitions (of which best-fit regions will be

a special case). In addition, ASPM2 will have one additional data structure,

generic regions, for representing arbitrary subsets of parameter space. This

additional data structure will allow users to create parameter subspaces from

scratch or based on existing response or fit regions, to process these regions using

basic set operations (union, intersection, set-difference, etc.) and to compute new

restricted response and fit partitions that only contain settings from the specified

generic region.
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In order to make these ideas more concrete and to illustrate their power, we

will now consider a few specific analyses that were either difficult or impossible

to perform using ASPM1, but that will be simple using ASPM2.

Example #1: Recovering predictions from specific settings

Suppose one wanted to know whether all of the best-fit settings for a subject

produce identical predictions or if they should really be broken up into separate

groups, each of which fits the subject equally well, but for qualitatively different

reasons. This kind of analysis is critical in analyzing and improving a

computational model. For example, if all the best-fit settings are failing to

successfully predict the same tasks, then that suggests that trying to improving the

model's accuracy on those tasks could greatly improve the model. On the other

hand, if different best-fits make inaccurate predictions on completely different

tasks, then focusing effort on any one of them would not have as big a big payoff.

What is needed is to be able to recover the predictions for each of the best-fit

settings (hopefully, without having to run the model on all of them and record the

results). This information is exactly what would be provided by a response

partition that had been restricted to include only best-fit settings. Different

regions within that partition would correspond to qualitatively different ways of

achieving the same level of fit while settings within a region would be known to

produce identical predictions. Thus, the number of regions within such a

response partition would correspond to the number of distinct best-fitting

predictions that could be produced by the model. Computing such a best-fit

response partition will be straightforward in ASPM2:

1. Compute the best-fit settings. Use compose, sort, and, if necessary,

search to produce a fit partition containing the best-fit region.

2. Create a generic region corresponding to the best-fit region.
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3. Restrict the response partitions produced by compose in step 1

above so that they only contain settings from the best-fit generic

region.

4. If there is more than one such response partition, compose the

resulting restricted response partitions together to form a single

best-fit response partition.

Such an analysis would have been impossible in the original version of

ASPM 1 since it provided no facilities for creating generic regions or restricting

response partitions (steps 2 and 3 above). Because the need for this type of

analysis arose so often (e.g., in order to determine what parts of the model needed

the most work; see the discussion above), ASPM1 was eventually augmented

with the ability to restrict primitive response partitions (but not compound) on the

basis of best-fit regions (but not other regions). But this functionality was

severely limited; it could only use best-fit regions, not second best-fit or worst-fit

regions, and it could only restrict primitive response partitions not compound

response partitions. In contrast, all these operations would be simple using

ASPM2.

Example #2: Imposing constraints on ASPM results

In many situations, one wants to impose additional constraints on the results

produced by ASPM. For example, one might want to know how the other

parameters should be set if parameter 3 is fixed at value "c" and parameter 7 is

fixed at value "a" (instead of letting all the parameters vary). Or one might want

to compute the best-fit settings that are guaranteed to correctly predict behavior

on a subset of tasks, instead of just the generic best-fit settings. These and similar

situations will be handled easily in ASPM2 by restricting the parameter space

before computing best-fit settings. In the case of fixed parameter values, this will
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be particularly straightforward: create a generic region containing the entire

parameter space except with the appropriate parameters fixed and then restrict the

response and/or fit partitions that have already been computed Computing best-

fit settings that are guaranteed to correctly predict behavior on a subset of tasks

will be only slightly more complicated:

1. Use compose to compute the compound response partition for the

subset of tasks that the model must predict correctly.

2. Sort the compound response partition to identify the parameter

settings that correctly predict behavior on these tasks.

3. Create a generic region corresponding to these settings.

4. Restrict the response and/or fit partitions that have already been

computed for the larger space based on this generic region.

These analyses are not possible in ASPM1 because of its limitations in

creating and manipulating generic regions and because it cannot restrict

compound response partitions and fit partitions based on generic regions.

Future Work

ASPM2 is currently being implemented and promises to offer a powerful set

of tools for analyzing symbolic parameter models. But if ASPM2 is going to

come into routine use by a variety of researchers as we hope, it will have to be

extremely easy, even trivial, to use. We have identified three major ways to

improve ASPM's usability:

1. The system should aid the user in computing primitive response

partitions. The major user input to ASPM1 was a set of primitive

response partitions and the system did not provide any help in their

construction. ASPM would be easier to use and analyses could be
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begun more quickly if it provided some tools for aiding the

construction of primitive response partitions.

For example, our experience is that debugging and improving a

model requires running its output through ASPM many times. In

the syllogistic reasoning work, for instance, the results of an ASPM

analysis would lead to insights into how to improve the model (e.g.,

at one point, we found that the model was particularly bad at

predicting behavior on tasks involving the quantifier "All". We

subsequently modified the model to include an new strategy on

these tasks and the fits improved dramatically). But as soon as the

model changed, the primitive response partitions would no longer

be valid and the model would need to be run again. Under such

conditions, it is very easy to mistakenly intermingle data analyses

from different versions of the model. ASPM should keep track of

all runs of the model in order to, for instance, prevent the user from

accidentally composing primitive response regions created by

different versions of the model. This may require that the model be

called from inside ASPM.

Another problem is that generating all possible responses to a task

can be combinatorially complex. ASPM cannot help with this

directly, as such generation is the job of the user's model, but we

have discovered some approaches that significantly reduce the

combinatorics in our test task domains (VanLehn & Pannu, in

preparation). The documentation of ASPM should describe such
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techniques, and provisions should be made to disseminate other

such techniques as they are developed.

2. The system should allow for the use of different, user-specified fit

measures. ASPM1 had a fixed fit measure built in: the number of

matches between the model and subject on the primitive tasks

(Hamming distance). But, as discussed earlier, different types of

analyses require different fit measures and ASPM should allow for

this diversity (see

3. The system's command syntax should facilitate the construction of

complex scripts and even full-fledged computer programs for

controlling sophisticated analyses. ASPM should make it easy for

the user to use command scripts that include iteration, conditionals,

and other programming language constructs. The UNIX shell in

which ASPM1 ran provides these capabilities, but ASPM1 made

them difficult to exploit since the commands were designed to be

interactive. ASPM should provide a simple command syntax

including command line arguments that can be used when the user

does not want to interact with commands.

Conclusion

We are confident that ASPM2 will provide a very powerful set of tools - a

sort of scientific workbench - for fitting and analyzing certain types of

parameterized models. Of course, it is not a panacea and will be more helpful in

some domains than in others. In trying to understand ASPM's scope of

applicability, we have identified the following limitations to its use.
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1. Discrete symbolic parameters: The model must have a finite set of

parameters, with each parameter's values being a separate discrete

set of symbols. This restriction is necessary so that response and fit

partitions will not divide up parameter space into an infinite set of

regions. In particular, ASPM cannot deal with continuous

parameters (such as real numbers).

2. Constant subject parameters: The model must have parameters

whose values can be assigned to describe a subject. The parameter

set must apply to all subjects on all tasks the subjects perform. Each

subject should be described by the same set of parameter values for

all tasks the subject performs. Without this restriction ASPM would

need to consider all possible combinations of parameter settings

from task to task which is not computationally feasible. Thus, if a

subject's behavior could best be described as switching between

parameter settings, the parameter space would need to be changed to

make this variability explicit.

3. Loosely-coupled tasks: Only a small subset of parameters can be

relevant to each of the primitive tasks the subjects perform. This

restriction guarantees that it will be computationally feasible to

compute the primitive response partitions because only a small

fraction of all possible parameter settings will need to be

considered. If every parameter were relevant to a task, then every

setting would have to be tried and this would not be feasible.
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4. Region compactness: The regions of parameter space that must be

considered must require only a small amount of memory space for

their representation. ASPM represents sets of parameter settings in

terms of cartesian products of parameter values. If a very large

numbcr of such cartesian products are required to represent a

specific region, then that region may require an unacceptable

amount of memory space. In the analyses we have done using

ASPM this has never been a problem, but it could arise in the future.

Our belief is that many, and perhaps most, symbolic parameter models in

cognitive science satisfy these requirements and that, as a result, ASPM should be

an extremely useful and powerful set of computational tools.
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Notes
IA partition of a set is a collection of disjoint subsets whose union is equal to

the set. We assume that a single response is associated with each parameter

setting. Thus, a parameter setting can only be in one response region. Non-

determinism can be handled by using sets of responses as the primitive responses.



Analysis of Symbolic Parameter Models

23

Figure Captions

Figure 1. Parameter space, responses, a response partition, and response regions.

Figure 2. A compound response partition.

Figure 3. A fit partition and fit regions.
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